
CI-CD-QA Glossary
Terminology used in the game

Determining the release date is particularly important
when still delivering big batch releases in a project
driven organization. You determine the release date
up-front, so that you can make arrangements with
dependencies so that they can deliver their changes
before or together with your changes, on that release
date. Often this is driven by a predefined calendar.

In an agile approach though, this is quite different.
You don’t deal with a project but with a product and
you deliver (preferably) small increments.You deploy
(install) frequently and release (activate) on demand.
In that case you will determine a release date but not
so long up-front.

In a traditional, calendar based release approach
(and definitely with more monolith types of systems)
it is important to know up-front what your
dependencies are: which system is impacted by your
change and which systems should implement a
change for you.

Modern applications are built with loose coupling in
mind, to make sure that teams can deliver their
changes as independently as possible. And if there
are dependencies, a good value stream
management tool can come handy here.



When executing tests, you want to see which tests
are executed and which of these succeeded and
which failed. The test progress report is especially
important when executing manual tests, to see .

In case of automated tests, you usually execute an
entire batch of tests and you will only see the
pass/fail status. With automated tests this is always
up to date with every executed test cycle.

Business as usual tests are a specific test set to
validate that the most used features of an application
still work properly after the implementation of new or
changed features. In a traditional approach these are
usually done close to the production release to make
sure that no regression was introduced.

In case of automated tests, these can be executed at
any time, be it when implementing a small change, a
large change, refactoring or a bug fix.



A bug report is always important: it gives you an idea
about the quality of the product under development,
the changes being implemented. The number of
unsolved bugs and their priority is the most important
criterion to evaluate the quality of the
release/change.

You can develop an application so that it meets the
functional requirements - does what it is supposed to
do - but if it takes too long before you get a response
or response times increase with the number of
concurrent users, your application becomes
unusable. People will stop. Therefore performance
testing is important to see how your application
behaves, both with normal expected load and
exceptional load. Good tools help you even identify
the bottlenecks in your end-to-end request
execution, so that you can address the specific
performance issue.



This is kind of typical for a project based approach
with long calendar based release cycles. Before you
can deploy/release to production, you have to pass
the go/no go meeting. Typically things like the test
progress, defects list and outcome of the penetration
tests are key indicators to decide whether a project
(or change set) is ready to go to production.
Beware that this does not become a Go/Go meeting
(with stakeholders pushing to go to production,
because some promises were made or some
campaign was already planned).

Threat modeling is a form of security analysis that
makes you think as a hacker. Based on the
architecture of the solution to be developed, you try
to identify as many vulnerabilities as possible and
plan appropriate actions to mitigate these
vulnerabilities.



Abuse case modeling is similar to threat modeling,
but in this case it is not based on the architecture of
the solution but on the use cases. For each use case
in your solution you try to identify situations in which
malicious users can exploit weaknesses in the
features that your application provides.

These are a set of principles, guidelines, patterns to
use or ready to use libraries that avoid security
breaches. These guidelines can be the answer to
deal with the OWASP top 10 security vulnerabilities.
Examples of such guidelines are (not exhaustive):

● do proper secrets management, never have
passwords in your code

● apply encryption where necessary
● only accept TLS communications, in specific

cases even mutual TLS
● never trust user input, always validate to

avoid cross site scripting, SQL injection, and
other malicious code

● …



3rd party library scans are meant for detecting
security vulnerabilities in open source libraries your
application depends on. It is not a “scan” as such,
but instead it checks whether the version of a library
you are using is known in a central database of
Common Vulnerabilities and Exposures (CVE), and if
so, what the severity of the vulnerability is.
Tools that do this vulnerability scanning usually also
help developers take appropriate actions to mitigate
the vulnerability (e.g. suggest which version to use
instead, and also generate a pull request for that
library in the version management system).

SAST stands for Static Application Security Testing.
The purpose of a SAST tool is to detect security
vulnerabilities in your source code, by applying static
analysis (scanning source code and trying to identify
vulnerable patterns).



SIEM stands for Security Information and Event
Management. A SIEM system collects logs, analysis
logs and correlates information from different log files
- both from technical infrastructure and business
applications - in order to detect suspicious behavior
early, so that appropriate actions can be taken (e.g.
detect that a hacker is trying to access your systems
and retrieve/destroy information).

Penetration testing is your last resort for security
testing. You let someone (often an external
specialized instance) test your application and try to
find vulnerabilities that need to be fixed. This kind of
test happens with a software version that is as close
to the production release as possible and is
executed in a non-production environment. Because
of the late moment in the development trajectory, it is
sometimes hard to fix vulnerabilities that require a lot
of effort (which may result in either acceptance of the
risk or postponing the release).

Penetration testing should therefore be considered
as your safety net, if a vulnerability could still sneak
through all the preceding actions.


