BUILD - RUN
IMPROVE - REPEAT

AlgamerapeuiFimplementing aneaiinpreoVving
your-bDevOps cycle

SimuLearn

Goal of this game

. Understand the DevOps cycle

Invest wisely

= [mprove your way of
working

= The right investments
first

= Keep money to cover
losses

= Don’t go bankrupt!

Elements of the game

The board

PLAN MONITOR ERATE OPERATE OP%!{'"ATE

PLAN OoP
Work visualization Approach ‘Approach Availability Capacity

b b b b b

REFACTOR

- INCEEE

P A
IMPROVE - REPEAT = .:o0¢
- ©@DEE

SRS

REFACTOR

/A @)696E9@
e (9@ 66

>/

X

Buoisian
30D
DY
)

=
(@)
N/

S
\©/
%

®
N

N
S
N
)
1
)

aunnseyu

Ao1d3a

@®
=
@
(&l

s
o
()

AN AN
REFACTO
/\ @099
e)08
(0@®
(DB (3)
®O@G

S
OO@G®

®
SN
W/
(O
il

)
=/
AL
P

. X

Aundas
iaod
2po3

ALIX31dWOD NOILNTOS - A3LNIWITdII STINLVIS
AO01d3a

BUILD BUILD TEST TEST TEST RELEASE RELEASE DEPLOY

Approach Breakers, Approach Responsibility. Security ‘Approval Activate Frequency.

b b b b b b b Vs

PLAN

Approach

Project approach with big
specification up-front
(“waterfall’”)

Cost: 0
Queue: 4

Flow:

All queued features need
to move together from 1
activity to the other. Only
queue new items when
the project is delivered.

The cards

= Different activities/
aspects per stage

= 3 performance levels
to invest

= Level 0 = starting
point

PLAN

Approach

Project approach with big
specification up-front
(“waterfall’”)

Cost: O

Queue: 4

Flow:

All queued features need
to move together from 1
activity to the other. Only
queue new items when
the project is delivered.

A
I

The cards

PLAN

Approach

Incidentjimpact:
R - {08 R

Incident cost: 30

Cause:

Medium high cost: a
project team tends to
focus more on delivering
project scope than on
code quality and run
stability

INCIDENT

The tokens

Feature Improvement Technical debt

Know vulnerability Incident

The dice

Progress of work Incidents that occur

Playing the game

Divide ownerships

Typical Dev stages

Typical Ops stages

What Is your decision

strategy?
Separate responsibilities Shared responsibility

= Everyone decides for = Shared decision
their own domain(s) about all domains

= Everyone invests in = Global budget

their own domain(s) = For investments

= Everyone pays for = For losses
their own losses

Financial impact of decision

6 strategy

= Shared responsibility:
1000 credits for all

= Separate responsibilities:
credits divided, according to:
= DevOps stages
= Activities

PLAN

Approach

Project approach with big
specification up-front
(“waterfall’”)

Cost: 0
Queue: 4

Flow:

All queued features need
to move together from 1
activity to the other. Only
queue new items when
the project is delivered.

Zero-state

= All activities start with
performance level O

= = pasic or no activity

= Can potentially cause
big damage

* Try to improve before
starting

Variation

Performance level

Start from 0 Your organization’s
= To get to know the situation
simulation

= Headstart for

= Experience everything Investments

that can go wrong = Better learning

experience for your
organization

= For heterogeneous
groups (meetups,
conferences, ...)

PLAN

Approach

Iterative project approach
(agile/ "Scrum” principle
& techniques)

All queued features need
to move together from 1
activity to the other. Only
queue new items when
the project is delivered.

Invest to improve

= Improvements come with
a cost

= Spend your budget
wisely!
= Not all at once
= The right priorities

= What are your initial
investments?

Invest to improve -
avoid efficiency penalty

PLAN PLAN PLAN

Approach Team Visualizatiog

Iterative product Separate build and
approach, driven by maintenance team

product backlog Cost: 0
ast: 0 Queue:Determined by

Cost: 150 NG ' Flow: PLAN-Approach
Queue: 2

(= less moves of tokens than die values)
Improve all PLAN aspect at the same pace!

Invest to improve -

efficiency penalty: what?
= perf(A) = performance level PLAN-Approach

= perf(T) = performance level PLAN-Team

= perf(V) = performance level PLAN-Visualization
= perf(A) > perf(T) or perf(A) > perf(V)?
= Penalty = perf (A) — low (perf (T), perf (V))

Invest to improve -
efficiency penalty: example

Invest to improve -
efficiency penalty: how?

Die value Penalty = 1 Penalty = 2

Flow and queue

= Queue size:

g)%mﬁ'c\r'] 0 = At least how many features
S need to be at this activity
specification up-front before you can move on to the
(“waterfall’”) neXt’)
Cost: 0 -

1 4 : .
g.‘c',?,:':e = Flow:
All queued features need
to move together from 1 - HOW can yOU move the
activity to the other. Only
queue new items when features?

the project is delivered.

= \WWhen can you bring in new
items?

Start here

= Queue your feature
tokens

= Move them to the first
activity according to:
= Queue size

= Flow

Implementing features

= Each participant
= Roles the regular die

= Moves feature tokens
according to:

= Value of die
= Queue size
= Flow

Implementing features
4 features queued

PLAN o | PLAN | PLAN

Visualization _ , Team Approach

Nothing | Separate build and Project approach with big
maintenance team | specification up-front
Cost: 0 | ‘ - (“waterfall’”)
Queue: Determined by | | Cost: 0 | |
Flow: PLAN Approach . Queue: Determined by
| Flow: PLAN Approach

All queued features need

to move together from 1
activity to the other. Only
queue new items when
the project is delivered.

PLAN

Visualization

Nothing

Cost: 0
Queue: Determined by
Flow: PLAN Approach

Implementing features

PLAN

Team

Separate build and
maintenance team

Cost: 0
Queue: Determined by
Flow: PLAN Approach

roll 6, move 4

Implementing features
roll 6, move 2 more

PLAN | " PLAN o
Visualization ’ﬁ g ~r “Approach
) ‘

Nothing | Separate Project approach with big
maintenanceéteam specification up-

Cost: 0 : . (“waterfall’")
Queue: Determined by | Cost: 0

Flow: PLAN Approach Queue: Determined by Cost: 0
' . Flow: PLAN Approach Queue: 4
Flow:
All gueued features need

to move tegether from 1
activity to the other. Only
gueue new items whaa
the project is delivg

Nothing

Cost: 0
Queue:
Flow:

P

Implementing features

P! AN
2

Separate build and
maintenance team

Cost: 0
Queue: Determined by
Flow: PLAN Approach

what you can’t do

PLAN o

“Approach

Project approach with big
specification up-
(“waterfall’™)

Implementing features
roll 3

PLAN o PLAN

Visualization Team

Nothing | Separate build and

maintenance team | specification up-,
Cost: 0 ("waterfall’”)
Queue: Determined by Cost: 0
Flow: PLAN Approach Queue: Determined by

Flow: PLAN Approach

queut
the project is delivered.

CODE

Quality
Nothing

Cost: 0

Queue: 0

Flow:

Feature can immediately
go to the next activity

Fast forward

CODE

Quality
Automatic code scans

Cost: 200

Queue: 0

Flow:

Feature can immediately
go to the next activity

CODE

Quality
Coding guidelines
Cost: 100

Queue:Determined by
Flow: PLAN-Approach

Cutting corners

= Speed up delivery
= Bypass quality gates
= Create technical debt

CODE

Quality
Coding guidelines
Cost: 100

Queue:Determined by
Flow: PLAN-Approach

Create technical debt

After each round

= Role both dice
= You’'ve got an even number?

= You are impacted by the incident on the
other die

= The even value = severity
= 2 = low priority — 10% of incident cost
= 4 = medium priority — 50% of incident cost
= 6 = high priority — 100% of incident cost

-~ What can possibly go wrong?

What can possibly go
wrong?

Reported Bug Security breach
vulnerability Fix ASAP Fix ASAP
Fix ASAP Count losses Count losses

~> What can possibly go wrong?

System outage Unexpected Performance
load ISsue

Solve the security

vulnerability
Take CVE token

Skip Plan stage

i

i

o

Use regular die to
move fix through all
stages

= |gnore gueue size

= No financial impact

Unsolved security
vulnerability

= |f not solved before a new vulnerabillity is thrown, this
becomes a security breach!

= _ Replace with security breach token
= Count your losses

Incident type

Incident severity

Flip all cards

Calculate financial loss

= Check the impact for
o G each activity

= Sum the incident costs
= Apply severity multiplier

Medium high cost: a]

project team tends to) Alterﬂ&thEly

focus more on delivering
project scope than on

code quality and run = Only sum costs for

stability N ,
activities you're

responsible for

INCIDENT

Severity multiplier

= 2 = low priority
10% of incident cost
= 4 = medium priority
50% of Incident cost
= 6 = high priority
100% of Incident cost

Why extra cost?

L S5 (0L

= These Incidents cause financial losses

= The lower your performance level, the higher the cost
= |Late detection & slow fixing = longer exposure

Fix the incident

= Take corresponding red
token

= Incidents skip Plan
stage

= Use normal die to move
fix through all stages

= |gnore queue size

Accept incident risk

= Low prio or cost incident:
pay loss

= Put token on board

= Don’t fix — accept risk

If the Incident is not fixed when you roll the
same incident type, you pay twice and need to
solve 2 incidents!

Technical debt becomes
Incident

= Technical debt not solved when incident of same type occurs
= Technical debt becomes incident

= + add extra incident

= Double financial loss

Failed change?

= New change In
production = risk of
failure

= When entire batch is
delivered:
Roll dice to see If an
Incident occurred after
activation

Create revenue

Create revenue

= Move features to this spot

= According to gueue size and
flow

= Earn money: 100
credits/feature

= No money for incidents,
Improvements, technical
debt, CVE’s!

= Remove tokens

& (17) (18) (19) (20)

(13)(14) (15

LNnangea
T3l Fiske

\ 9

10

11

s

= More features
Implemented = increased
complexity

= As of 13: risk of failing
changes, potential
Incidents
— roll dice

= Above 20: refactoring
necessary!

Invest to improve

= Put Improvement
token on “Queue
here”

= Implement by rolling
die

= Own cadence,
dedicated people?

When to invest?

= Typically:
= At the start of the game
= After delivering features — when you get revenue
= When a serious incident occurred

= But in general: whenever you want to and have
the means to

And now...

Let the game begin!

Debrief

Learnings

”

First focus on the build quality
= Don’t be tempted to start delivering faster!

”

Slow progress in the beginning

&

WIill prove good foundation once you improve
delivery

&

Security Issues can have high financial impact
= Improve these first!

Learnings

= Evolve to small batches and automation for faster
revenue

Smaller batches will get full benefit with shorter
deployment intervals

= Don’t forget availabllity, stability and performance of
your system!

= Shared responsibilities, budget and decisions are
better than split responsibilities

Get started yourself

Go to Tabletopia.com

PLAYGROUND WORKSHOP .ABOUT HELP A

TABLETOPIA

HOME FIND &PLAY ALLGAMES PLAYERS @' O Search games, #room or @player

.Q)ﬁ%)n)@>ea/

o = ¥

e me W
LUFLTY - TAOH AN

Build-Run-Improve-Repeat ‘ PLAY HOTSEAT v

New Releases Free

PLAY ONLINE ‘

h 16+ B2 38 Xh-2n @y 27h
Credits

Author
Koen Vastmans - SimulLearn

Announcement video
Learn about the principles of DevOps, the different activities of all the stages of the of the = =
DevOps cycle and where to invest first to improve your way of working. This is a serious |ﬁéR6VE REPEAT
game, meant for leaning purposes.

Links Rules Q‘}"‘EE%
3 Fadilitator's guide ‘
<+ Why this game?

Setups

3-8 players, Eng - Full version

https://www.tabletopia.com/games/build-run-improve-repeat

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 38
	Slide 39
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64

